Direct PCR of Forensic Evidence: Making the Case to Modify the Quantification Requirement

Abigail S. Bathrick, Anna C. Salmonsen, Jon M. Davoren

This project was supported by Award No. 2019-DU-BX-0009, awarded by the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice. The opinions, findings, and conclusions or recommendations expressed in this presentation are those of the authors and do not necessarily reflect those of the Department of Justice.

DIRECT PCR Introduction

WHAT IS DIRECT PCR?

Direct PCR is a DNA processing method in which a sample is added directly to an amplification reaction without prior purification or quantification.

EARLY USE OF DIRECT PCR

NON-FORENSIC APPLICATIONS

Non-forensic applications – 1990s

- Colony PCR, a rapid screening method for large numbers of bacterial cells for a gene of interest
- Human leukocyte antigen (HLA) testing of whole blood
- · Viral and bacterial pathogen detection in clinical specimens

DIRECT PCR FORENSIC INTEREST

PUBLICATION HISTORY

DIRECT PCR

Forensic Reference & Databasing Samples

REFERENCES & DATABASING

Forensic reference samples – mid-2000s

- Sample types: Blood, saliva, & buccal cells
- Substrates: FTA & non-FTA cards, swabs, Bode Buccal Collectors

REFERENCES & DATABASING

In the U.S., direct PCR is used for casework reference & database samples.

FBI Quality Assurance Standards for Forensic DNA Testing Laboratories – Standard 9.4

The laboratory shall quantify or otherwise calculate the amount of human DNA in forensic samples prior to nuclear DNA amplification. Quantification of human DNA for casework reference samples shall not be required if a laboratory has a validated system demonstrated to reliably yield successful DNA amplification and typing without prior quantification.

DIRECT PCR Forensic Evidentiary Samples

EVIDENTIARY SAMPLES

Forensic evidentiary samples – 2010s

• Linacre A, Pekarek V, Swaran YC, Tobe SS. Generation of DNA profiles from fabrics without DNA extraction. Forensic Sci Int Genet. 2010;4(2):137-41.

Forensic Science International: Genetics 4 (2010) 137-141

Generation of DNA profiles from fabrics without DNA extraction Adrian Linacre^{*}, Vera Pekarek, Yuvaneswari Chandramoulee Swaran, Shanan S. Tobe *Centre for Forensic Science, WestChem, University of Strathclyde, 204 George Street, Glasgow G1 1XW, UK*

- Touch DNA
- Glass (cotton swabs & water)
- Fabric (cuttings)
- Direct PCR with PowerPlex 16 & AmpFlSTR SGM Plus

EVIDENTIARY SAMPLES

Collection & Sampling Method Evaluations

• Swab, cut, punch, tape-lift, etc.

		Forensic Science Internatio	ional: Genetics 6 (2012) 407–412	1		
ELSEVIE http://doi	Contents lists available at SciVerse ScienceDirect Forensic Science International: Genetics					
ORIGIN	Α		Forensic Science International: Genetics 46 (2020) 102256			
sample			Contents lists available at ScienceDirect			
Yuvanesv Copar Centre for Foren: and se		1	Forensic Science International: Genetics			
Allison J	ELSEVIER		iournal homepage: www.elsevier.com/locate/fsigen Forensic Science International: Genetics 4 (2010) 137-141			
August E	Research paper		Contents lists available at ScienceDirect			
Received: 1 © Springer	Successful S visualisation	- EL	Forensic Science International: Genetic	S		
	Belinda Martin	ELSEVIER	journal homepage: www.elsevier.com/locate/fsig			
	^a College of Science & Eng ^b Forensic Science SA, GF ^c Defence Science and Teo	Generatior	n of DNA profiles from fabrics without DNA extra	action		

Adrian Linacre^{*}, Vera Pekarek, Yuvaneswari Chandramoulee Swaran, Shanan S. Tobe Centre for Forensic Science, WestChem, University of Strathclyde, 204 George Street, Glasgow G1 1XW, UK

Department of Chemi

Exploring tapelifts as a method for dual workflow STR amplification

Belinda Martin^{a,b,*}, Duncan Taylor^{a,b,c}, Adrian Linacre^{a,b}

^a Biological Sciences Building, Flinders University, Bedford Park 5042, Australia
^b Biological Sciences Building, College of Science and Engineering, Flinders University, Bedford Park 5042, Australia

^c Forensic Science South Australia, 21 Divett Pl, Adelaide, SA 5000, Australia

EVIDENTIARY SAMPLES

Amplification System Evaluations

- Y-STRs: Yfiler[™] Direct, Yfiler Plus, PowerPlex[®] Y 23
- Autosomal STRs: PowerPlex 16HS, Profiler Plus, PowerPlex 21, SGM Plus[®], NGM, NGM Select[™], GlobalFiler[®], Identifiler[®] Plus, Identifiler Direct, VeriFiler[™] Plus, Investigator[®] 24Plex QS

EVIDENTIARY SAMPLES

Evidentiary Sample Type Evaluations

• Blood, saliva, and touch DNA/fingerprints on various substrates; semen; fingernails; hair

DIRECT PCR Current Research

• •

NIJ AWARD # 2019-DU-BX-0009 OVERVIEW

Direct PCR & Touch DNA Research at Bode

- NIJ-funded project; Jan 1, 2020 Dec 31, 2022
- Evaluate different methods of collecting touch DNA from various substrates and perform direct PCR using amplification methods that were already validated for standard casework processing

- Research was divided into two phases
 - Phase I direct PCR with GF; nine touch DNA collection methods evaluated on eight substrates; three worn fabrics also evaluated
 - Phase II direct PCR with PPF6C; best collection methods selected, GF vs PPF6C comparison, 6-month time study, post-direct PCR re-sampling evaluation

PHASE I SAMPLE PREPARATION

- 1" x 5/8" areas outlined on non-fabric items
- 3 donors/non-fabric item; handled for 1 min
- 1 donor/fabric item; worn for \geq 12 hours

PHASE I SAMPLE COLLECTION

Collection Substrate	Diameter (mm ²)	Collection Method	Moistening Agent
Puritan [®]			Sterile H ₂ O
cotton	3.0	Swabbing	0.1% Triton X
swab			None - dry
Copan	1.2-2.0	Swabbing	Sterile H ₂ O
microFLOQ®			0.1% Triton X
swab			None - dry
Whatman™ Lot No. 16961692	1.2	Rubbing/ scraping	Sterile H ₂ O
Non-Indicating			0.1% Triton X
			None - dry
Fabric	2.0	Cutting	None - dry

PHASE I SAMPLE PROCESSING

Processing methods

- Standard with DNA extraction and quantification
- Direct PCR

Eight replicates per substrate, donor, collection method, and processing method

• n = 3,376

Process	Method
Extraction	Qiagen Investigator [®] STAR [™] Lyse&Prep
Concentration	Microcon [®] DNA Fast Flow
Quantification	Quantifiler [®] Trio
Amplification	GlobalFiler
CE	3500xL Genetic Analyzer
Data analysis	GeneMapper ID-X [®] v1.5 Analytical threshold 125 RFU Stochastic threshold 600 RFU
Evaluation metric	Percentage of profile obtained (% profile) CODIS eligibility

PHASE I RESULTS

Processing Method	CODIS Eligibility Success Rates (%)						
	Plastic Slide Buccals	Polyester	Metal Tool	Handgun Grip	Wood Handle	Foam Cup	Plastic Slide Fingerprints
Standard	82	63	56	33	37	13	7
Direct PCR	97	88	69	54	50	19	14

Processing	CODIS Eligibility Success Rates (%)						
Method	Vinyl Shutter	Denim	100% Wool	Concrete Bricks	Cartridge Casings		
Standard	35	100	100	44	6		
Direct PCR	25	0	0	0	0		

PHASE | RESULTS

Contamination Events

- Foreign alleles were observed in 5% of samples.
- 60% of contamination events were attributed to indirect DNA transfer (alleles consistent with a cohabitating member of one donor's household).
- These events highlight the sensitivity of the direct PCR method. Practitioners should be aware that mixture deconvolution may be needed.

PHASE II OVERVIEW

Phase II Brief Summary

- Direct PCR with PowerPlex Fusion 6C; n = 2,336
- GF vs PPF6C comparison, 6-month time study, post-direct PCR re-sampling evaluation

6-month Time Study

DIRECT PCR Use In Casework

DIRECT PCR PUBLICATIONS

BY COUNTRY

Direct PCR of casework bloodstains validated by Forensic Science Service Tasmania (FSST) in 2014

- Direct PCR of 1.0 mm bloodstain cuttings/punches with PowerPlex 21 (13 µL rxns)
- 340 real casework bloodstains processed with direct PCR
 - 90% produced acceptable profiles; 10% required subsequent organic extraction and qPCR
- Additional onus on examiners to assess the suitability of a stain for direct PCR and sample accordingly

Forensic Science International: Genetics 12 (2014) 86–92

Contents lists available at ScienceDirect

Forensic Science International: Genetics

journal homepage: www.elsevier.com/locate/fsig

Direct amplification of casework bloodstains using the Promega PowerPlex[®] 21 PCR Amplification System

Kerryn Gray*, Damian Crowle, Pam Scott

Forensic Science Service Tasmania, 20 St. Johns Avenue, New Town, Tasmania 7008, Australia

DIRECT PCR Summary & Final Thoughts

DIRECT PCR ADVANTAGES

Faster Processing Times

- Complete profiles generated in less than 3 h
- Lab personnel save an estimated 3–4 h hands-on time

Reduced Costs

• Save 25% in reagent costs

Effective & Sensitive

- Direct PCR evidentiary type publications: blood (28%); saliva (20%), touch DNA (41%), and semen (9%)
- More work needed for semen and sexual assault mixture samples

DIRECT PCR LIMITATIONS

No DNA quantification

- Direct PCR reactions may contain variable/excessive quantities of template DNA
- May need to dilute the amplification product prior to CE or re-inject the sample for a shorter length of time

Interference from PCR inhibitors/challenging substrates

• Indigo dye, fired cartridge casings, etc.

Sensitivity

• May result in more complex mixtures that require mixture deconvolution

Sample Consumption

• No DNA extraction means that no extract will be available for re-analysis

FINAL THOUGHTS

FBI QAS Standard 9.4

The laboratory shall quantify or otherwise calculate the amount of human DNA in forensic samples prior to nuclear DNA amplification. Quantification of human DNA for casework reference samples shall not be required if a laboratory has a validated system demonstrated to reliably yield successful DNA amplification and typing without prior quantification.

Reassess the quant requirement?

- Direct PCR touch DNA
 - Overloaded: 0.6%
- Standard processing touch DNA
 - Consumed after quant: 99%
 - <1 pg/µl at quant but CODIS eligible: 0.5%
 - DNA extract for re-amp: 0.7%
- Direct PCR bloodstains [Gray et al. 2014]
 - Overloaded: 1%
 - Reprocessed: 10%

FINAL THOUGHTS

The purpose of Quality Assurance is to foster an environment of continued improvement.

Can concerns be addressed by establishing eligibility recommendations?

- Limit to specific substrate types
- Ensure there is enough sample for re-testing

How do we move forward?

- Critically consider and evaluate the existing research.
- Publish! Publish! Publish!
- Survey labs about their direct PCR use

ACKNOWLEDGEMENTS

Thank you to...

- Anna Salmonsen GW Graduate fellow responsible for the laboratory work on NIJ Award # 2019-DU-BX-0009
- Jon Davoren project PI
- Bode's Research Team

QUESTIONS?

Abby.Bathrick@bodetech.com

©2022 Bode Technology Group. All rights reserved.